UNIVERSITY OF VIRGINIA
  • Home
  • Previous Research
    • Centrifugal Microdevices >
      • PET Chips
    • Clinical Diagnostics and Forensic Analysis >
      • Cell Sorting and Solid Phase Extraction >
        • Acoustic Differential Extraction
        • Isolation of Circulating Tumor Cells
        • Enhanced Sperm Cell Recovery
        • Monolith Stationary Phase for Microfluidic DNA Purification
        • Nucleic Acid Purification in a Two-Stage, Dual-Phase Microchip
        • Large Volume Reduction Solid Phase Extraction
        • Plastic SPE Microdevices
      • Polymerase Chain Reaction (PCR) >
        • Infrared PCR
        • Microwave PCR
      • Label-Free Optical Methods for DNA and Cell Quantification
      • DNA Extraction and PCR Amplification
    • Fluidic Control >
      • Passive Valving
    • Genetic Analysis >
      • A Fully Integrated Microfluidic Genetic Analysis Device for the Detection of Blood Cancers
      • Electric Field-Flow Fractionation for DNA Concentration
      • Acousto-Optic Tunable Fiber
    • Narcotics and Explosives Colorimetric Detection
  • People
  • Publications
  • Collaborators
  • Contact
  • Conferences
Picture

Acoustic Differential Extraction

This project highlights the use of acoustic forces in a valveless microfluidic device to trap sperm cells in the presence of female epithelial DNA obtained from sexual assault evidence.The device is comprised of two layers: a printed circuit board layer containing microtransducers, and a glass fluidic layer.  An ultrasonic frequency tuned specifically to the transducer characteristics and channel dimensions is applied to the device, and an acoustic standing wave is set up within the microchannel, producing a trapping zone at a pressure node.  This method exploits the density, volume, and compressibility differences between sperm cells and free DNA from epithelial cell lysate to create a force strong enough to retain the sperm cells at these nodes, while allowing the free DNA to pass through the device.  Laminar flow valving is implemented to direct the two fractions to separate outlets. 

Picture
Contact Landers Research Group
jpl5e@virginia.edu
(434) 243-8658
375, 379, 395 Chemistry Building
McCormick Road
​Charlottesville, Va 22904
UVA Chemistry Department
Powered by Create your own unique website with customizable templates.
  • Home
  • Previous Research
    • Centrifugal Microdevices >
      • PET Chips
    • Clinical Diagnostics and Forensic Analysis >
      • Cell Sorting and Solid Phase Extraction >
        • Acoustic Differential Extraction
        • Isolation of Circulating Tumor Cells
        • Enhanced Sperm Cell Recovery
        • Monolith Stationary Phase for Microfluidic DNA Purification
        • Nucleic Acid Purification in a Two-Stage, Dual-Phase Microchip
        • Large Volume Reduction Solid Phase Extraction
        • Plastic SPE Microdevices
      • Polymerase Chain Reaction (PCR) >
        • Infrared PCR
        • Microwave PCR
      • Label-Free Optical Methods for DNA and Cell Quantification
      • DNA Extraction and PCR Amplification
    • Fluidic Control >
      • Passive Valving
    • Genetic Analysis >
      • A Fully Integrated Microfluidic Genetic Analysis Device for the Detection of Blood Cancers
      • Electric Field-Flow Fractionation for DNA Concentration
      • Acousto-Optic Tunable Fiber
    • Narcotics and Explosives Colorimetric Detection
  • People
  • Publications
  • Collaborators
  • Contact
  • Conferences