UNIVERSITY OF VIRGINIA
  • Home
  • Previous Research
    • Centrifugal Microdevices >
      • PET Chips
    • Clinical Diagnostics and Forensic Analysis >
      • Cell Sorting and Solid Phase Extraction >
        • Acoustic Differential Extraction
        • Isolation of Circulating Tumor Cells
        • Enhanced Sperm Cell Recovery
        • Monolith Stationary Phase for Microfluidic DNA Purification
        • Nucleic Acid Purification in a Two-Stage, Dual-Phase Microchip
        • Large Volume Reduction Solid Phase Extraction
        • Plastic SPE Microdevices
      • Polymerase Chain Reaction (PCR) >
        • Infrared PCR
        • Microwave PCR
      • Label-Free Optical Methods for DNA and Cell Quantification
      • DNA Extraction and PCR Amplification
    • Fluidic Control >
      • Passive Valving
    • Genetic Analysis >
      • A Fully Integrated Microfluidic Genetic Analysis Device for the Detection of Blood Cancers
      • Electric Field-Flow Fractionation for DNA Concentration
      • Acousto-Optic Tunable Fiber
    • Narcotics and Explosives Colorimetric Detection
  • People
  • Publications
  • Collaborators
  • Contact
  • Conferences
Picture

Acousto-Optic Tunable Fiber

Laser-induced fluorescence (LIF) is the most common form of detection on microchips. Typically, a confocal setup is used, where incoming laser light is focused into a microchannel through an objective, and the fluorescence emission is collected and sent to a photomultiplier tube (PMT) for detection. Increasing the number of fluorophores to be detected in the sample creates a need for separating out different emission lines. We are using an acousto-optic tunable filter (AOTF) to select these emission lines. The AOTF acts as an electronically tunable spectral bandpass filter. It is made up of a single optically-active crystal bonded to a piezoelectric. By applying different radio frequencies to the piezoelectric, acoustic waves are propagated through the crystal, and a single wavelength of light can be separated from a multi-color source. This allows for a separation of multiple species spectrally, even without temporal resolution. We plan on using this device to perform multicolor detection of tagged DNA bases for clinical and forensic applications. 
Contact Landers Research Group
jpl5e@virginia.edu
(434) 243-8658
375, 379, 395 Chemistry Building
McCormick Road
​Charlottesville, Va 22904
UVA Chemistry Department
Powered by Create your own unique website with customizable templates.
  • Home
  • Previous Research
    • Centrifugal Microdevices >
      • PET Chips
    • Clinical Diagnostics and Forensic Analysis >
      • Cell Sorting and Solid Phase Extraction >
        • Acoustic Differential Extraction
        • Isolation of Circulating Tumor Cells
        • Enhanced Sperm Cell Recovery
        • Monolith Stationary Phase for Microfluidic DNA Purification
        • Nucleic Acid Purification in a Two-Stage, Dual-Phase Microchip
        • Large Volume Reduction Solid Phase Extraction
        • Plastic SPE Microdevices
      • Polymerase Chain Reaction (PCR) >
        • Infrared PCR
        • Microwave PCR
      • Label-Free Optical Methods for DNA and Cell Quantification
      • DNA Extraction and PCR Amplification
    • Fluidic Control >
      • Passive Valving
    • Genetic Analysis >
      • A Fully Integrated Microfluidic Genetic Analysis Device for the Detection of Blood Cancers
      • Electric Field-Flow Fractionation for DNA Concentration
      • Acousto-Optic Tunable Fiber
    • Narcotics and Explosives Colorimetric Detection
  • People
  • Publications
  • Collaborators
  • Contact
  • Conferences