UNIVERSITY OF VIRGINIA
  • Home
  • Previous Research
    • Centrifugal Microdevices >
      • PET Chips
    • Clinical Diagnostics and Forensic Analysis >
      • Cell Sorting and Solid Phase Extraction >
        • Acoustic Differential Extraction
        • Isolation of Circulating Tumor Cells
        • Enhanced Sperm Cell Recovery
        • Monolith Stationary Phase for Microfluidic DNA Purification
        • Nucleic Acid Purification in a Two-Stage, Dual-Phase Microchip
        • Large Volume Reduction Solid Phase Extraction
        • Plastic SPE Microdevices
      • Polymerase Chain Reaction (PCR) >
        • Infrared PCR
        • Microwave PCR
      • Label-Free Optical Methods for DNA and Cell Quantification
      • DNA Extraction and PCR Amplification
    • Fluidic Control >
      • Passive Valving
    • Genetic Analysis >
      • A Fully Integrated Microfluidic Genetic Analysis Device for the Detection of Blood Cancers
      • Electric Field-Flow Fractionation for DNA Concentration
      • Acousto-Optic Tunable Fiber
    • Narcotics and Explosives Colorimetric Detection
  • People
  • Publications
  • Collaborators
  • Contact
  • Conferences
Picture

Separation and Isolation of Circulating Tumor Cells (CTC) from Whole Blood

Microfluidic acoustic cell separation and sorting (acoustophoresis) is a technique that utilizes ultrasonic standing waves to sort cells based on size and composition as they are passed through a microfluidic channel. A piezoelectric transducer is activated to set up a standing acoustic wave within the microfluidic device creating low pressure nodes through the separation channel. The acoustic forces from the wave focus particles above a desired size into the center of the channel, while smaller particles remain at the edges of the channel. By varying the voltage applied to the transducer, one can change the amplitude of the acoustic forces, resulting in a change in the size of particles focused to the center of the channel.

    This technique is currently being applied toward the separation and sorting of circulating tumor cells (CTCs) from whole blood. CTCs vary in size but are generally larger than red blood cells (RBCs), which makes acoustophoresis a great candidate for label free separation and sorting. The force of the acoustic wave moves the larger cells, such as CTCs and white blood cells (WBCs), to the center of the separation channel while the RBCs and other small particles will remain at the outer edges of the channel. This will allow for the isolation and collection of CTCs from RBCs in a label free manner where they can then be collected and studied further.

Contact Landers Research Group
jpl5e@virginia.edu
(434) 243-8658
375, 379, 395 Chemistry Building
McCormick Road
​Charlottesville, Va 22904
UVA Chemistry Department
Powered by Create your own unique website with customizable templates.
  • Home
  • Previous Research
    • Centrifugal Microdevices >
      • PET Chips
    • Clinical Diagnostics and Forensic Analysis >
      • Cell Sorting and Solid Phase Extraction >
        • Acoustic Differential Extraction
        • Isolation of Circulating Tumor Cells
        • Enhanced Sperm Cell Recovery
        • Monolith Stationary Phase for Microfluidic DNA Purification
        • Nucleic Acid Purification in a Two-Stage, Dual-Phase Microchip
        • Large Volume Reduction Solid Phase Extraction
        • Plastic SPE Microdevices
      • Polymerase Chain Reaction (PCR) >
        • Infrared PCR
        • Microwave PCR
      • Label-Free Optical Methods for DNA and Cell Quantification
      • DNA Extraction and PCR Amplification
    • Fluidic Control >
      • Passive Valving
    • Genetic Analysis >
      • A Fully Integrated Microfluidic Genetic Analysis Device for the Detection of Blood Cancers
      • Electric Field-Flow Fractionation for DNA Concentration
      • Acousto-Optic Tunable Fiber
    • Narcotics and Explosives Colorimetric Detection
  • People
  • Publications
  • Collaborators
  • Contact
  • Conferences