UNIVERSITY OF VIRGINIA
  • Home
  • Previous Research
    • Centrifugal Microdevices >
      • PET Chips
    • Clinical Diagnostics and Forensic Analysis >
      • Cell Sorting and Solid Phase Extraction >
        • Acoustic Differential Extraction
        • Isolation of Circulating Tumor Cells
        • Enhanced Sperm Cell Recovery
        • Monolith Stationary Phase for Microfluidic DNA Purification
        • Nucleic Acid Purification in a Two-Stage, Dual-Phase Microchip
        • Large Volume Reduction Solid Phase Extraction
        • Plastic SPE Microdevices
      • Polymerase Chain Reaction (PCR) >
        • Infrared PCR
        • Microwave PCR
      • Label-Free Optical Methods for DNA and Cell Quantification
      • DNA Extraction and PCR Amplification
    • Fluidic Control >
      • Passive Valving
    • Genetic Analysis >
      • A Fully Integrated Microfluidic Genetic Analysis Device for the Detection of Blood Cancers
      • Electric Field-Flow Fractionation for DNA Concentration
      • Acousto-Optic Tunable Fiber
    • Narcotics and Explosives Colorimetric Detection
  • People
  • Publications
  • Collaborators
  • Contact
  • Conferences
Picture

Polyethylene Terephthalate Microdevices

The Landers Lab had developed a technique for fabricating microfluidic devices with complex multilayer architectures using a laser printer, a CO2 laser cutter, an office laminator, and common overhead transparencies as a printable substrate via a laser print/cut and laminate (PCL) methodology.  The printer toner serves three functions; (1) it defines the microfluidic architecture, (2) acts as the bonding agent and, (3) provides printable, hydrophobic ‘valves’ for fluidic flow control. Using common graphics software, the protocol produces microfluidic devices with a design-to-device time of ~40 min.  Devices of any shape can be generated for an array of multistep assays with colorimetric detection of molecular species ranging from small molecules to proteins.  The simplicity of the protocol, availability of the equipment and substrate and cost-effective nature of the process make microfluidic devices available to those who might benefit most from expedited, microscale chemistry. 


Picture
Contact Landers Research Group
jpl5e@virginia.edu
(434) 243-8658
375, 379, 395 Chemistry Building
McCormick Road
​Charlottesville, Va 22904
​UVA Chemistry Department
Powered by Create your own unique website with customizable templates.
  • Home
  • Previous Research
    • Centrifugal Microdevices >
      • PET Chips
    • Clinical Diagnostics and Forensic Analysis >
      • Cell Sorting and Solid Phase Extraction >
        • Acoustic Differential Extraction
        • Isolation of Circulating Tumor Cells
        • Enhanced Sperm Cell Recovery
        • Monolith Stationary Phase for Microfluidic DNA Purification
        • Nucleic Acid Purification in a Two-Stage, Dual-Phase Microchip
        • Large Volume Reduction Solid Phase Extraction
        • Plastic SPE Microdevices
      • Polymerase Chain Reaction (PCR) >
        • Infrared PCR
        • Microwave PCR
      • Label-Free Optical Methods for DNA and Cell Quantification
      • DNA Extraction and PCR Amplification
    • Fluidic Control >
      • Passive Valving
    • Genetic Analysis >
      • A Fully Integrated Microfluidic Genetic Analysis Device for the Detection of Blood Cancers
      • Electric Field-Flow Fractionation for DNA Concentration
      • Acousto-Optic Tunable Fiber
    • Narcotics and Explosives Colorimetric Detection
  • People
  • Publications
  • Collaborators
  • Contact
  • Conferences